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Linearizing mappings for certain nonlinear diffusion
equations

Christodoulos Sophocleous
Department of Mathematics and Statistics, University of Cyprus, CY-1678 Nicosia, Cyprus

Received 31 March 1998

Abstract. In this paper we consider the nonlinear diffusion equations of the type
ut = x1−M [xN−1λ(u+ µ)−2ux ]x . It is shown that linearizing point transformations do not exist.
This equation can be equivalently written as a system of two and three equations, respectively.
Linearizing point transformations are sought for these two auxiliary systems and the complete
list is presented. These in turn may be employed to construct contact transformations which
map the nonlinear diffusion equation to a linear partial differential equation. Such linearizing
point transformations exist only ifN = 2−M andN = 2+M.

1. Introduction

We consider the generalized radial diffusion equations of the type

∂u

∂t
= x1−M ∂

∂x

[
xN−1f (u)

∂u

∂x

]
(1.1)

which are of considerable interest in mathematical physics. Some cases have been used
to model physical situations in fields involving diffusion processes [1, 2]. In particular,
equation (1.1) whenf (u) = un has a large number of applications, for bothn > 0 (‘slow
diffusion’) and n < 0 (‘fast diffusion’). In addition, whenM = N = 1 we have the
well known nonlinear diffusion equationut = [f (u)ux ]x which among other applications,
appears in problems related to plasma physics [3] and metallurgy [4].

Transformation methods (local or non-local) have been continually applied to
equation (1.1) [5–10]. Furthermore, there is a great interest in finding exact similarity
solutions [11–14].

We also point out that in the literature we meet equivalent forms of equation (1.1). For
example, consider the point transformation [9]

t ′ = t x ′ = M

M2
xM/M2 u′ = c1u+ c2 (1.2)

whereM, M2 6= 0 and(N2− 2)M = (N − 2)M2, connects equation (1.1) and the equation

∂u′

∂t ′
= x1−M2

∂

∂x ′

[
x ′N2−1f (u′)

∂u′

∂x ′

]
. (1.3)

If we setM2 = N2 in the transformation (1.2) thenx ′ = (2/2+M − N)x(2+M−N/2) and
equation (1.3) becomesu′t ′ = x ′1−N2[x ′N2−1f (u′)u′x ′ ]x ′ , whereN2 = (2M/2+M−N). This
latter equation has been considered in [7, 8]. Similarly, if we setM2 = 1 thenx ′ = MxM

0305-4470/98/296293+15$19.50c© 1998 IOP Publishing Ltd 6293



6294 C Sophocleous

and equation (1.3) becomesu′t ′ = [x ′nf (u′)u′x ′ ]x ′ , wheren = (N +M − 2/M) which has
been considered in [5].

Recently Kingston and Sophocleous [15] have presented a number of results on point
transformations for certain classes of partial differential equations. We use a specific theorem
to show that point transformations that linearize equation (1.1) do not exist.

In [15] it is proved that the point transformationx ′ = P(x, t, u), t ′ = Q(x, t, u) and
u′ = R(x, t, u) transforms the partial differential equation (PDE)

u′t ′ = H ′(x ′, t ′, u′, u′1, u′2, . . . , u′n) (1.4)

to the PDE

ut = H(x, t, u, u1, u2, . . . , un) (1.5)

whereun = (∂nu/∂xn) and u′n = (∂nu′/∂x ′n), n > 2, H andH ′ are polynomials in the
derivativesun andu′n respectively, if and only ifP = P(x, t), Q = Q(t) and

H = P−1
x R−1

u (PxQtH
′ + PtRx + PtRuux − PxRt). (1.6)

For non-degenerate point transformations (the definition is given in the next section) we
require thatPx 6= 0, Qt 6= 0 andRu 6= 0.

We takeH equal to the right-hand side of equation (1.1) withf (u) not a constant
and H ′ = x ′1−M2[cx ′N2−1u′x ′ ]x ′ which is the right-hand side of equation (1.3) with
f (u′) = constant. We substitute these forms ofH andH ′ into the identity (1.6) and we use
the relations [15, 16]

u′x ′ = (Px)−1(Ruux + Rx)
u′x ′x ′ = (Px)−3(PxRuuxx + PxRuuu2

x + (2PxRux − PxxRu)ux + PxRxx − PxxRx).
The coefficient ofuxx in (1.6), which is identically equal to zero, gives

(Px)
−2(Qt)

−1Ru(x
M−NP 2

x f (u)− cPM2−N2Qt) = 0. (1.7)

Equation (1.7) is satisfied only iff (u) is not a function ofu, that is, if it is a constant.
However, this is a contradiction. Therefore we have shown that point transformations that
linearize equation (1.1) do not exist.

Now, if we introduce the potentialv, (1.1) can be written as a system of two PDEs

vx = xM−1u vt = xN−1f (u)ux. (1.8)

Also an important related equation is the integrated form of equation (1.1)

vt = xN−1f (x1−Mvx)[x1−Mvx ]x (1.9)

where u = x1−Mvx . Therefore if v = F(x, t) satisfies equation (1.9), then(u, v) =
(x1−MFx, F ) solve equations (1.8) andu = x1−MFx solves (1.1). In addition, if
{u(x, t), v(x, t)} satisfy (1.8), thenu(x, t) solves (1.1) andv(x, t) solves (1.9).

In this work, we consider equations (1.1), (1.8) and (1.9) withf (u) = λ(u + µ)−2.
These specific equations have a number of properties. For example, forM = N = 1,
(1.1) admits Lie–B̈acklund transformations and there exists a transformation that maps it to
the linear heat equationut = uxx [17–19]. Also transformations that linearize (1.1) exist
whenN = 2−M or N = 2+M [5, 10, 19]. In fact, in subsequent analysis we conclude
that equation (1.1) can be linearized only ifN = 2−M or N = 2+M. We present a
complete list of these linearizing transformations. We generalize the existing linearizing
transformations and in addition we present some new results.

Bluman and Kumei [20] derived a method for determining invertible mappings from a
nonlinear system of PDEs to a linear system of PDEs. The method is based on the existence
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of an infinite-parameter Lie group of transformations admitted by the nonlinear system. If
such a group exists and certain criteria are satisfied [20], then using the infinite-dimensional
symmetry a transformation may be constructed to link the nonlinear system of PDEs to a
linear system of PDEs. The auxiliary system given by equations (1.8) admits an infinite-
parameter Lie group of transformation, whenf (u) = λ(u+µ)−2 andN = 2−M, which in
turn leads to invertible mapping which linearizes equations (1.8) [10]. This latter mapping
leads to a non-invertible mapping of (1.1) (withf (u) = λ(u + µ)−2, N = 2− M). In
particular, the system

vx = xM−1u vt = λxN−1

(u+ µ)2ux (1.10)

admits the symmetry

0∞ = x1−M9(ξ, t)
∂

∂x
− (u+ µ)2∂9(ξ, t)

∂ξ

∂

∂u
− µ9(ξ, t) ∂

∂v
(1.11)

whereN = 2− M, ξ = v + (µ/M)xM , if M 6= 0 or ξ = v + µ logx, if M = 0 and
y = 9(ξ, t) is an arbitrary solution of the linear heat equation

∂y

∂t
− λ∂

2y

∂ξ2
= 0. (1.12)

Symmetry (1.11) leads to the invertible mapping

x ′ = v +

µ

M
xM M 6= 0

µ logx M = 0
t ′ = t u′ = 1

u+ µ

v′ =

µ

M
xM M 6= 0

µ logx M = 0
(1.13)

which transforms any solution{u′(x ′, t ′), v′(x ′, t ′)} of the linear system of PDEs

v′x ′ = u′ v′t ′ = λu′x ′ (1.14)

to a solution{u(x, t), v(x, t)} of the nonlinear system (1.10) withN = 2−M and hence
to a solutionu(x, t) of equation (1.1) (withf = λ(u+ µ)−2, N = 2−M).

Such mappings are used to construct contact transformations. For example, the
symmetry (1.11) (withλ = 1, µ = 0, M = N = 1) leads to the reciprocal mapping
(double application gives the identity transformation, that is, it forms a cyclic group of
order 2)x′ = v, t ′ = t , u′ = u−1 andv′ = x which connects (1.10) and (1.14). In turn this
leads to the one-to-one contact transformation [19]

dx ′ = u dx + ux
u2

dt dt ′ = dt u′ = 1

u
(1.15)

which maps the equationut = (u−2ux)x into the equationu′t ′ = u′x ′x ′ . Choosing a fixed
point (x0, t0), we have the following integrated form of the contact transformation (1.15)

x ′ =
∫ x

x0

u dx −
∫ t

t0

(
∂

∂x
u−1

)
x=x0

dt t ′ = t − t0 u′ = 1

u
.

Such transformations can be extended to diffusion equations of other types. See for example,
[5, 6, 21, 22].

The aim of the present paper is to search for transformations analogous to (1.13) which
map the system (1.10) into a linear system of the form (1.8) (we setf (u) = constant). In the
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spirit of the work of Pallikaros and Sophocleous [9], who classified the point transformations
which connect two equations of the form (1.1), we search for point transformations of the
class

x ′ = P(x, t, u, v) t ′ = Q(x, t, u, v) u′ = R(x, t, u, v) v′ = S(x, t, u, v)
(1.16)

which map the system

v′x ′ = x ′M2−1u′ v′t ′ = cx ′N2−1u′x ′ (1.17)

into the system (1.10).
Now with the introduction of the potentialw, equations (1.8) yield the system

vx = xM−1u wx = x1−Nv wt = g(u) (1.18)

wheref = (dg/du). Also the following subsystems arise from the system (1.18)

wx = x1−Nv wt = g(x1−Mvx) (1.19)

wxx + (N − 1)x−1wx = xM−Nu wt = g(u) (1.20)

wt = g(xN−Mwxx + (N − 1)xN−M−1wx). (1.21)

Whenf (u) = λ(u+ µ)−2 and [g(u) = −λ(u+ µ)−1], (1.18) which takes the form

vx = xM−1u wx = x1−Nv wt = − λ

u+ µ (1.22)

admit infinite-parameter Lie groups of transformations which consequently lead to invertible
mappings which connect (1.22) to a linear system [10]. As before, we search for point
transformations which map (1.22) to a linear system of the form (1.18) (g(u) = constant).

2. Point transformations that linearize equations (1.10)

We consider the point transformation

x ′ = P(x, t, u, v) t ′ = Q(x, t, u, v) u′ = R(x, t, u, v) v′ = S(x, t, u, v)
(2.1)

relating to x, t , u(x, t), v(x, t) and x ′, t ′, u′(x ′, t ′), v′(x ′, t ′), and assume that this is
non-degenerate in the sense that the Jacobian

J = ∂(P,Q,R, S)

∂(x, t, u, v)
6= 0 (2.2)

and also that

δ = ∂(P (x, t, u(x, t), v(x, t)),Q(x, t, u(x, t), v(x, t)))

∂(x, t)
6= 0. (2.3)

In (2.3)P andQ are expressed as functions ofx andt whereas in (2.2)P , Q, R andS are
to be regarded as functions of the independent variablesx, t , u andv.

Using the transformation (2.1), we can express the derivatives ofu′(x ′, t ′) andv′(x ′, t ′)
in terms ofux , ut , vx , vt , x, t , u, v (see for example, [15, 16])

u′x ′ =
DxRDtQ−DtRDxQ

δ
u′t ′ =

−DxRDtP +DtRDxQ

δ
(2.4)

v′x ′ =
DxSDtQ−DtSDxQ

δ
v′t ′ =

−DxSDtP +DtSDxQ

δ
(2.5)

whereDx andDt are the total derivatives with respect tox and t respectively.
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We also consider the two systems of PDEs which are related by the point transformations
(2.1)

vx = xM1−1u vt = λxN1−1

(u+ µ)2ux (2.6)

and

v′x ′ = x ′M2−1u′ v′t ′ = cx ′N2−1u′x ′ (2.7)

whereλ, µ and c are constants. Using (2.1), (2.4) and (2.5) and eliminatingvx and vt
from equations (2.6) (where we have takenvt = xN1−1f (u)ux and where we will set
f (u) = λ(u+µ)−2 at a later stage), equations (2.7) may be written as two identities of the
form

δ−1E1(x, t, u, v, ux, ut ) = 0 δ−1E2(x, t, u, v, ux, ut ) = 0 (2.8)

wherex, t , u, v, ux andut are regarded as independent variables andE1, E2 are determined
polynomials inux andut .

Now, the coefficients ofu2
x , ux , ut in E1 andu2

x, ut in E2, which must be identically
equal to zero, givePu = Qx = Qu = Qv = Su = 0. Therefore, the point transformations
(2.1) can be written in the simplified form

x ′ = P(x, t, v) t ′ = Q(t) u′ = R(x, t, u, v) v′ = S(x, t, v). (2.9)

To ensure that the transformations are non-degenerate we need to have

QtRu(PxSv − PvSx) 6= 0 (2.10)

where we have used the forms ofJ and δ in (2.2) and (2.3) respectively. In addition, we
must have

P 2
v + R2

v 6= 0 (2.11)

because otherwise the point transformations derived are equivalent to the transformations
which were obtained in [9].

Finally, fromE1 = 0 we get

R = P 1−M2(xM1−1uSv + Sx)
xM1−1uPv + Px (2.12)

and the coefficients ofux andu0
x in E2 = 0 give, respectively

xN1−1(PvSx − PxSv)f (u)+ cPN2−1QtRu = 0 (2.13)

(xM1−1uSv + Sx)Pt − (xM1−1uPv + Px)St + cQtP
N2−1(xM1−1uRv + Rx) = 0. (2.14)

Now we substitute the expression ofR given by equation (2.12) andf (u) = λ(u+µ)−2 into
equations (2.13) and (2.14) and then set the coefficients of powers ofu equal to zero. This
gives us an overdetermined system which enables us to determine the functional forms of
Q(t), P(x, t, v) andS(x, t, v) and consequently obtain the desired point transformations. In
the following analysis we omit any calculations which were performed with the assistance
of the algebraic manipulation package REDUCE [23].

It turns out that point transformations of the form (2.9) exist only when in equations (2.6)
we haveN1 = 2−M1 and in equations (2.7)N2 = 2+M2 or N2 = 2−M2, (M2 6= 0) or
N2 = 2+ 3M2, (M2 6= 0). Therefore, (2.6) take the form

vx = xM1−1u vt = λx1−M1

(u+ µ)2ux. (2.15)
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The variablesξ andη which appear in the following results are given by the relations

ξ =
 v +

µ

M1
xM1 M1 6= 0

v + µ logx M1 = 0
η =



v − µ

M1
xM1 M1 6= 0, µ 6= 0

1

M1
xM1 M1 6= 0, µ = 0

v − µ logx M1 = 0, µ 6= 0

logx M1 = 0, µ = 0.

(2.16)

When N2 = 2 − M2, (M2 6= 0) the following three transformations connect equa-
tions (2.15) and the equations

v′x ′ = x ′M2−1u′ v′t ′ = cx ′1−M2u′x ′ . (2.17)

t ′ = λ

c
t x ′ = [M2ξ + c1]1/M2 v′ =

{
c2x

M1 M1 6= 0

c2 logx M1 = 0
(TR.1)

u′ = k

u+ µ wherek =
{
c2M1, M1 6= 0

c2, M1 = 0

where c1 and c2(6= 0) are constants. This latter point transformation generalizes the
transformation (1.13). That is, if we set in (TR.1)c = λ, c1 = 0, c2 = 1, M1 = M

andM2 = 1 we obtain (1.13). In addition (TR.1) is a special case of the following point
transformation.

t ′ = λ

c
t x ′ = (M2ξ + c1t + c2)

1/M2 (TR.2)

v′ = c3η exp

[
−
(
c2

1t + 2c1M2ξ

4λM2
2

)]
+ θ(t, ξ)

u′ = c3

(
− c1

2λM2
η + u− µ

u+ µ
)

exp

[
−
(
c2

1t + 2c1M2ξ

4λM2
2

)]
+ ∂θ
∂ξ

wherec1, c2 andc3(6= 0) are constants and the functionθ(t, ξ) satisfies the linear PDE

∂θ

∂t
− λ∂

2θ

∂ξ2
− c1

M2

∂θ

∂ξ
= 0. (2.18)

In addition in (TR.2) we requireµ 6= 0. In the case whereµ = 0 (note the forms ofξ and
η in equation (2.16)) we need to apply the transformation

u− µ
u+ µ →

1

u
(2.19)

in the form ofu′(= R).
As we pointed out before, this latter point transformation generalizes (TR.1). If we

set in (TR.2)c1 = 0 and θ = −c3ξ we obtain (TR.1). Also note that, whenλ = c,
µ = c1 = c2 = θ = 0 andM1 = M2 = c3 = 1, the point transformation (TR.2) leads to the
well known contact transformation (1.15).

t ′ = −λ
c

1

t
x ′ =

(
M2ξ + c1t + c2

t

)1/M2

(TR.3)
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v′ = c3η

√
−ct
λ

exp

[
(ξ + (c2/M2))

2

4λt

]
+ θ(t, ξ)

u′ = c3

√
−ct
λ

[
(M2ξ + c2)η

2λM2
+ (u− µ)t

u+ µ
]

exp

[
(ξ + (c2/M2))

2

4λt

]
+ t ∂θ

∂ξ

whereλc < 0, c1, c2, c3(6= 0) are constants,µ must not vanish and the functionθ(t, ξ)
satisfies the linear PDE

∂θ

∂t
− λ∂

2θ

∂ξ2
+
(
M2ξ + c2

M2t

)
∂θ

∂ξ
= 0. (2.20)

If µ = 0 we need to apply the transformation (2.19) to (TR.3).
WhenN2 = 2+M2 the following three transformations connect (2.15) and equations

v′x ′ = x ′M2−1u′ v′t ′ = cx ′M2+1u′x ′ . (2.21)

t ′ = λ

c
t x ′ = exp[ξ + λM2t ] v′ =

{
c1x

M1 M1 6= 0

c1 logx M1 = 0
(TR.4)

u′ = k exp[−M2(ξ + λM2t)]

u+ µ wherek =
{
c1M1 M1 6= 0

c1 M1 = 0

wherec1 is a non-zero constant. If we setλ = c = c1 = M1 = 1 andµ = M2 = 0, then
from the point transformation (TR.4) we construct the contact transformation

dx ′

x ′
= u dx + ux

u2
dt dt ′ = dt u′ = 1

u
(2.22)

which maps the equationut = (u−2ux)x into the linear equationu′t ′ = x ′(x ′u′x ′)x ′ . The
integrated form of (2.22) is

x ′ = exp

{∫ x

x0

u dx −
∫ t

t0

(
∂

∂x
u−1

)
x=x0

dt

}
t ′ = t − t0 u′ = 1

u

where (x0, t0) is a fixed point.
As a second example, we consider the special case of (TR.4) whereλ = c = c1 = 1

andµ = M1 = M2 = 0. Then the point transformation (TR.4) becomes

t ′ = t x ′ = ev v′ = ln x u′ = 1

u

which is a reciprocal transformation (cyclic group of order 2). This latter point
transformation also leads to the contact transformation (2.22) which maps the nonlinear
equationut = x(xu−2ux)x into the linear equationu′t ′ = x ′(x ′u′x ′)x ′ .

t ′ = λ

c
t x ′ = exp[ξ + c1t ] (TR.5)

v′ = c2η exp

[
− (c1− λM2)

2t + 2(c1− λM2)ξ

4λ

]
+ θ(t, ξ)

u′ = c2

[
− (c1− λM2)η

2λ
+ u− µ
u+ µ

]
exp

[
− (c1+ λM2)

2t + 2(c1+ λM2)ξ

4λ

]
+ exp[−M2(ξ + c1t)]

∂θ

∂ξ
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wherec1, c2(6= 0) are constants,µ 6= 0 and the functionθ(t, ξ) satisfies the linear PDE

∂θ

∂t
− λ∂

2θ

∂ξ2
+ (λM2− c1)

∂θ

∂ξ
= 0. (2.23)

This latter transformation is a generalization of (TR.4). If we setc1 = λM2 andθ = −c2ξ

in (TR.5), then it becomes identical to (TR.4).

t ′ = −λ
c

1

t
x ′ = exp

[
ξ

t

]
(TR.6)

v′ = c1η

√
−ct
λ

exp

[
(ξ + λM2)

2

4λt

]
+ θ(t, ξ)

u′ = c1

√
−ct
λ

[
(ξ + λM2)η

2λ
+ (u− µ)t

u+ µ
]

exp

[
(ξ − λM2)

2

4λt

]
+ t exp

[
−M2ξ

t

]
∂θ

∂ξ

whereλc < 0, c1 6= 0, µ 6= 0 and the functionθ(t, ξ) satisfies the linear PDE

∂θ

∂t
− λ∂

2θ

∂ξ2
+
(
ξ + λM2

t

)
∂θ

∂ξ
= 0. (2.24)

In the case whereµ = 0 we need to apply the transformation (2.19) to (TR.5) and (TR.6).
Finally, whenN2 = 2+ 3M2, (M2 6= 0) the following two transformations connect

equations (2.15) and equations

v′x ′ = x ′M2−1u′ v′t ′ = cx ′1+3M2u′x ′ . (2.25)

t ′ = λ

c
t x ′ = (c1t + c2−M2ξ)

−1/M2 (TR.7)

v′ = c3M2η

c1t + c2−M2ξ
exp

[
2c1M2ξ − c2

1t

4λM2
2

]
+ θ(t, ξ)

u′ = c3

[
η(c2

1t + c1c2− c1M2ξ + 2λM2
2)

2λ
+ M2(u− µ)

u+ µ (c1t + c2−M2ξ)

]
× exp

[
2c1M2ξ − c2

1t

4λM2
2

]
+ (c1t + c2−M2ξ)

2∂θ

∂ξ

wherec1, c2, c3 (6= 0) are constants,µ 6= 0 and the functionθ(t, ξ) satisfies the linear PDE

∂θ

∂t
− λ∂

2θ

∂ξ2
+ c1

M2

∂θ

∂ξ
+ 2λM2

c1t + c2−M2ξ

∂θ

∂ξ
= 0. (2.26)

t ′ = −λ
c

1

t
x ′ =

[
c1t + c2−M2ξ

t

]−1/M2

(TR.8)

v′ = c3

√
−ct
λ

(
M2tη

c1t + c2−M2ξ

)
exp

[
(ξ − (c2/M2))

2

4λt

]
+ θ(t, ξ)

u′ = c3

√
−ct
λ

[
− η(c

2
2 + c1c2t − 2c2M2ξ − c1M2tξ − 2λM2

2 t +M2
2ξ

2)

2λt

+M2(u− µ)
u+ µ (c1t + c2−M2ξ)

]
exp

[
(ξ − (c2/M2))

2

4λt

]
+ (c1t + c2−M2ξ)

2

t

∂θ

∂ξ
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whereλc < 0, c1, c2, c3 (6= 0) are constants,µ 6= 0 and the functionθ(t, ξ) satisfies the
linear PDE

∂θ

∂t
− λ∂

2θ

∂ξ2
+
(
M2ξ − c2

M2t

)
∂θ

∂ξ
+ 2λM2

c1t + c2−M2ξ

∂θ

∂ξ
= 0. (2.27)

In the case whereµ = 0 we need to apply the transformation (2.19) to (TR.7) and (TR.8).

3. Point transformations that linearize equations (1.22)

We consider the point transformation

x ′ = P(x, t, u, v,w) t ′ = Q(x, t, u, v,w)
u′ = R(x, t, u, v,w) v′ = S(x, t, u, v,w) w′ = Z(x, t, u, v,w) (3.1)

relatingx, t , u(x, t), v(x, t), w(x, t) andx ′, t ′, u′(x ′, t ′), v′(x ′, t ′), w′(x ′, t ′), and assume
that this is non-degenerate in the sense that the Jacobian

J = ∂(P,Q,R, S, Z)

∂(x, t, u, v,w)
6= 0 (3.2)

and also that

δ = ∂(P (x, t, u(x, t), v(x, t), w(x, t)),Q(x, t, u(x, t), v(x, t), w(x, t)))

∂(x, t)
6= 0. (3.3)

Using the transformations (3.1), we can express the derivatives ofu′(x ′, t ′), v′(x ′, t ′) and
w′(x ′, t ′) in terms of x, t , u, v, w, ux , ut , vx , vt , wx andwt . The first derivatives of
u′(x ′, t ′) andv′(x ′, t ′) are defined by the relations (2.4) and (2.5) respectively, and similarly
for w′(x ′, t ′) we have

w′x ′ =
DxZDtQ−DtZDxQ

δ
w′t ′ =

−DxZDtP +DtZDxQ

δ
. (3.4)

We also consider the two systems of PDEs which are related by the point transformations
(3.1)

vx = xM1−1u wx = x1−N1v wt = − λ

u+ µ (3.5)

and

v′x ′ = x ′M2−1u′ w′x ′ = x ′1−N2v′ w′t ′ = cu′ (3.6)

whereλ, µ, c are constants. Using (3.1), (2.4), (2.5) and (3.4) and eliminatingvx , wx and
wt from (3.5), equations (3.6) may be written as three identities of the form

δ−1E1(x, t, u, v, ux, ut , vt ) = 0

δ−1E2(x, t, u, v, ux, ut , vt ) = 0

δ−1E3(x, t, u, v, ux, ut , vt ) = 0 (3.7)

wherex, t , u, v, ux , ut and vt are regarded as independent variables andE1, E2, E3 are
determined polynomials inux , ut andvt .

Now, the coefficients ofuxvt in E1, E2 andE3 give Pu = Qu = Su = Zu = 0. Also
the coefficients ofvt in E1 andE2 lead to the resultQx = Qv = Qw = 0. Therefore, the
point transformations (3.1) can be written in the simplified form

x ′ = P(x, t, v, w) t ′ = Q(t) u′ = R(x, t, u, v,w) v′ = S(x, t, v, w)
w′ = Z(x, t, v, w). (3.8)



6302 C Sophocleous

FromE1 = 0 andE2 = 0 we get respectively

R = P 1−M2(xM1+N1−2uSv + vSw + xN1−1Sx)

xM1+N1−2uPv + vPw + xN1−1Px
(3.9)

S = PN2−1(xM1+N1−2uZv + vZw + xN1−1Zx)

xM1+N1−2uPv + vPw + xN1−1Px
. (3.10)

Finally, the coefficients ofvt andv0
t in E3 = 0 give respectively

(PwZv − PvZw)v + (PxZv − PvZx)xN1−1 = 0 (3.11)

xM1+N1−2u

[
PtZv − PvZt + λ

u+ µ(PvZw − PwZv)+ cPvQtR

]
+v[PtZw − PwZt + cPwQtR]

+xN1−1

[
PtZx − PxZt + λ

u+ µ(PxZw − PwZx)+ cPxQtR

]
= 0. (3.12)

We substitute the form ofR, which is given by equation (3.9), into equation (3.12).
If we multiply the new form of (3.12) through by [(u + µ) × denominator ofR] and
then pick the coefficients of powers ofu, we obtain three identities. These three identities
and equation (3.11) enable us to derive the functional forms ofQ(t), P(x, t, v, w) and
Z(x, t, v, w) and these in turn lead to the forms ofS(x, t, v, w) andR(x, t, u, v,w) using
(3.10) and (3.9) respectively. Consequently, the desired point transformations may be
classified. In the following analysis we omit any further calculations.

It turns out that point transformations of the form (3.8) exist only if in equations (3.5)
we haveN1 = 2−M1 orN1 = 2+M1 and if in equations (3.6)N2 = 2−M2 orN2 = 2+M2

or N2 = 2+M2/3.
The variablesξ andη which appear in the following analysis, are given by the relations

ξ =
 v +

µ

M1
xM1 M1 6= 0

v + µ logx M1 = 0
(3.13)

η =



w − v

M1
xM1 − µ

2M2
1

x2M1 N1 = 2−M1, M1 6= 0

w + v

M1
x−M1 + µ

M1
logx N1 = 2+M1, M1 6= 0

w − v logx − µ
2
(logx)2 N1 = 2, M1 = 0.

(3.14)

We setN1 = 2−M1, (M1 6= 0) andN2 = 2−M2, (M2 6= 0) in equations (3.5) and (3.6)
respectively, to obtain

vx = xM1−1u wx = xM1−1v wt = − λ

u+ µ (3.15)

and

v′x ′ = x ′M2−1u′ w′x ′ = x ′M2−1v′ w′t ′ = cu′. (3.16)

The following two point transformations connect equations (3.15) and (3.16).

t ′ = λ

c
t x ′ = (M2ξ + c1t + c2)

1/M2 (TR.9)
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w′ = c3η exp

[
−c

2
1t + 2c1M2ξ

4λM2
2

]
+ θ(t, ξ)

v′ = −c3

(
c1η + 2λ(M2/M1)x

M1

2λM2

)
exp

[
−c

2
1t + 2c1M2ξ

4λM2
2

]
+ θξ

u′ = c3

(
c2

1η + 4c1λ(M2/M1)x
M1

4λ2M2
2

− 1

u+ µ
)

exp

[
−c

2
1t + 2c1M2ξ

4λM2
2

]
+ θξξ

wherec1, c2, c3 (6= 0) are constants and the functionθ(t, ξ) satisfies the linear PDE (2.18).

t ′ = −λ
c

1

t
x ′ =

(
M2ξ + c1t + c2

t

)1/M2

(TR.10)

w′ = c3η

√
−ct
λ

exp

[
(ξ + (c2/M2))

2

4λt

]
+ θ(t, ξ)

v′ = c3

√
−ct
λ

(
c2η +M2ηξ − 2λ(M2/M1)tx

M1

2λM2

)
exp

[
(ξ + (c2/M2))

2

4λt

]
+ tθξ

u′ = c3

√
−ct
λ

[
(c2η +M2ηξ − 4λ(M2/M1)tx

M1)(M2ξ + c2)+ 2λM2
2 tη

4λ2M2
2

− t2

u+ µ
]

× exp

[
(ξ + (c2/M2))

2

4λt

]
+ t2θξξ

whereλc < 0, c1, c2, c3 (6= 0) are constants and the functionθ(t, ξ) satisfies the linear
PDE (2.20).

The following two point transformations connect equations (3.15) and equations

v′x ′ = x ′M2−1u′ w′x ′ = x ′1−M2v′ w′t ′ = cu′ (3.17)

where we have setN2 = 2+M2 in equations (3.6). Note that in this case the parameter
M2 can be zero.

t ′ = λ

c
t x ′ = exp[ξ + c1t ] (TR.11)

w′ = c2η exp

[
− (c1+ λM2)

2t + 2(c1+ λM2)ξ

4λ

]
+ θ(t, ξ)

v′ =
{
− c2

2(λ/M1)x
M1 + c1η + λM2η

2λ

× exp

[
− (c1+ λM2)

2t + 2(c1+ λM2)ξ

4λ

]
+ θξ

}
exp[c1M2t +M2ξ ]

u′ = c2

(
4c1(λ/M1)x

M1 + c2
1η − λ2M2

2η

4λ2
− 1

u+ µ
)

× exp

[
− (c1+ λM2)

2t + 2(c1+ λM2)ξ

4λ

]
+M2θξ + θξξ

wherec1, c2 (6= 0) are constants and the functionθ(t, ξ) satisfies the linear PDE

∂θ

∂t
− λ∂

2θ

∂ξ2
− (c1+ λM2)

∂θ

∂ξ
= 0. (3.18)
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t ′ = −λ
c

1

t
x ′ = exp

[
ξ

t

]
(TR.12)

w′ = c1η

√
−ct
λ

exp

[
(ξ − λM2)

2

4λt

]
+ θ(t, ξ)

v′ =
{
c1

√
−ct
λ

[
ηξ − λM2η − 2(λ/M1)tx

M1

2λ

]
exp

[
(ξ − λM2)

2

4λt

]
+ tθξ

}
exp

[
M2ξ

t

]
u′ = c1

√
−ct
λ

[
ηξ2− 4(λ/M1)tx

M1ξ + 2λtη − λ2M2
2η

4λ2
− t2

u+ µ
]

× exp

[
(ξ − λM2)

2

4λt

]
+M2tθξ + t2θξξ

whereλc < 0, c1 6= 0 and the functionθ(t, ξ) satisfies the linear PDE

∂θ

∂t
− λ∂

2θ

∂ξ2
+
(
ξ − λM2

t

)
∂θ

∂ξ
= 0. (3.19)

Finally, we setN2 = 2+ (M2/3), (M2 6= 0) in (3.6) to obtain

v′x ′ = x ′M2−1u′ w′x ′ = x ′1−M2/3v′ w′t ′ = cu′. (3.20)

Equations (3.15) and (3.20) are connected by the point transformations (TR.13) and (TR.14)
which are read as follows

t ′ = λ

c
t x ′ =

(
c1t + c2+M2ξ

3

)3/M2

(TR.13)

w′ = c3
M2η

c1t + c2+M2ξ
exp

[
−c

2
1t + 2c1M2ξ

4λM2
2

]
+ θ(t, ξ)

v′ = −c3

[
(c1t + c2+M2ξ)(2λ(M2/M1)x

M1 + c1η)+ 2λM2
2η

18λ

]
× exp

[
−c

2
1t + 2c1M2ξ

4λM2
2

]
+ 1

9
(c1t + c2+M2ξ)

2θξ

u′ = c3

c1t + c2+M2ξ

[
4c1λ(M2/M1)x

M1 + c2
1η

4λ2M2
− M2

u+ µ
]

× exp

[
−c

2
1t + 2c1M2ξ

4λM2
2

]
+ 2M2

c1t + c2+M2ξ
θξ + θξξ

wherec1, c2, c3 (6= 0) are constants the functionθ(t, ξ) satisfies the linear PDE

∂θ

∂t
− λ∂

2θ

∂ξ2
− c1

M2

∂θ

∂ξ
− 2λM2

c1t + c2+M2ξ

∂θ

∂ξ
= 0. (3.21)

t ′ = −λ
c

1

t
x ′ =

[
M2ξ + c1t + c2

3t

]3/M2

(TR.14)

w′ = c3

√
−ct
λ

M2tη

M2ξ + c1t + c2
exp

[
(M2ξ + c2)

2

4λM2
2 t

]
+ θ(t, ξ)

v′ = c3

√
−ct
λ

[
(c2η +M2ηξ − 2λ(M2/M1)tx

M1)(M2ξ + c1t + c2)− 2λM2
2 tη

18λt

]
× exp

[
(M2ξ + c2)

2

4λM2
2 t

]
+ (M2ξ + c1t + c2)

2

9t
θξ
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u′ = c3

√
−ct
λ

t

M2ξ + c1t + c2

[
(M2ξ + c2)(c2η +M2ηξ − 4λ(M2/M1)tx

M1)+ 2λM2
2 tη

4λ2M2

− M2t
2

u+ µ
]

exp

[
(M2ξ + c2)

2

4λM2
2 t

]
+ 2M2t

2

M2ξ + c1t + c2
θξ + t2θξξ

whereλc < 0, c1, c2, c3 (6= 0) are constants and the functionθ(t, ξ) satisfies the linear
PDE

∂θ

∂t
− λ∂

2θ

∂ξ2
+ M2ξ + c2

M2t

∂θ

∂ξ
− 2λM2

M2ξ + c1t + c2

∂θ

∂ξ
= 0. (3.22)

As we stated earlier point transformations of the form (3.8) also exist when we have
N1 = 2+M1, (M1 6= 0) in (3.5)

vx = xM1−1u wx = x−(M1+1)v wt = − λ

u+ µ. (3.23)

If N1 = 2+M1 (M1 6= 0) then making the following changes

ξ → M1η η→ ξ xM1 →−M1x
M1

1

u+ µ →−
M1x

M1

u+ µ (3.24)

where the variablesξ and η are given by the relations (3.13) and (3.14) respectively, on
transformations (TR.9)–(TR.14) we have the following results.

(a) The point transformations (TR.9) and (TR.10) connect equations (3.23) and (3.16);
(b) the point transformations (TR.11) and (TR.12) connect equations (3.23) and (3.17);
(c) the point transformations (TR.13) and (TR.14) connect equations (3.23) and (3.20).
If we apply the transformation (3.24) on (TR.9) and if we setM1 = M2 = λ = c = c3

= 1, µ = c1 = c2 = 0 andθ = constant, then the resulting point transformation

t ′ = t x ′ = w + v
x

w′ = v + θ v′ = x u′ = x

u
(3.25)

leads to the contact transformation

dx ′ = u

x
dx +

(
xux

u2
− 1

u

)
dt dt ′ = dt u′ = x

u
(3.26)

which maps the nonlinear PDEut = (x2u−2ux)x into the linear PDEu′t ′ = u′x ′x ′ .
As a second example, we apply the transformation (3.24) on the point transformation

(TR.11) and then we setM1 = λ = c = c2 = 1 andM2 = µ = c1 = θ = 0 to give

t ′ = t x ′ = ew+(v/x) w′ = v v′ = x u′ = x

u
. (3.27)

This latter point transformation leads to the contact transformation

dx ′

x ′
= u

x
dx +

(
x2ux

u2
− 1

u

)
dt dt ′ = dt u′ = x

u
(3.28)

which maps the nonlinear PDEut = (x2u−2ux)x into the linear PDEu′t ′ = x ′(x ′u′x ′)x ′ .
Finally if N1 = 2 andM1 = 0 then equations (3.5) take the form

vx = u

x
wx = v

x
wt = − λ

u+ µ (3.29)

and making the change

1

M1
xM1 → logx (3.30)
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in transformations (TR.9)–(TR.14), where the variablesξ and η are given by the
relations (3.13) and (3.14) respectively, we have the following results.

(a) The point transformations (TR.9) and (TR.10) connect equations (3.29) and (3.16);
(b) the point transformations (TR.11) and (TR.12) connect equations (3.29) and (3.17);
(c) the point transformations (TR.13) and (TR.14) connect equations (3.29) and (3.20).
If we apply (3.30) on (TR.11) and setλ = c = 1, c2 = −1 andM2 = µ = c1 = θ = 0,

then we obtain the reciprocal transformation (cyclic group of order 2)

t ′ = t x ′ = ev w′ = −w + v logx v′ = logx u′ = 1

u
. (3.31)

4. Remarks

Probably the most useful and powerful point transformations of PDEs are those which form
continuous (Lie) group transformations, each member of which leaves an equation invariant.
Such transformations are not appropriate for directly linking a PDE with an equation of a
different form. This is useful, for example, when converting equations to a canonical form
on which an established theory can be used. This was the aim of the present paper, to connect
a class of nonlinear PDEs to a class of linear PDEs. Furthermore, the point transformation
analysis, in addition to transformations which link different equations and transformations
that lead to symmetries, might produce discrete symmetries which have been overlooked in
the classical method for determining symmetries of a specific class of PDEs. For example,
the discrete symmetry [16]x ′ = x/t , t ′ = 1/t , u′ = −(ut − x) leaves the Burger-type
equationut + uux + (f (t) − f (1/t))uxx = 0 invariant, an additional symmetry to the Lie
point ones obtained from the classical approach [24].

These reasons show that there is merit in studying point transformations directly in
finite forms with the ultimate dual aims of finding the complete set of point transformation
symmetries of PDEs and also discovering new links between different equations.

The results which are presented in this paper may be seen as a part of the problem of
classifying the complete list of point transformations of the class (2.1) that connect the two
systems of PDEs

vx = xM1−1u vt = xN1−1f (u)ux (4.1)

and

v′x ′ = x ′M2−1u′ v′t ′ = x ′N2−1g(u′)u′x ′ (4.2)

and of the class (3.1) that connect the two systems of PDEs

vx = xM1−1u wx = x1−N1v wt = F(u) (4.3)

and

v′x ′ = x ′M2−1u′ w′x ′ = x ′1−N2v′ w′t ′ = G(u′) (4.4)

wheref = dF/du andg = dG/du′. Symmetries for the systems (4.1) and (4.3) have already
been considered in [10]. Also the complete list of point transformations of equation (1.1)
is presented in [9]. Further study, along the lines of this paper, in classifying the point
transformations of the systems (4.1) and (4.3) may therefore be useful.

As stated earlier, the main feature for point transformations relating different PDEs is
that using known solutions for one you can generate new solutions for the other. In our case,
since, in principle, it is easier to solve linear PDEs, the point transformations presented here
may be employed to generate new solutions for the nonlinear systems of PDEs (1.10) and
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(1.22) using known solutions for the corresponding linear system of PDEs. Furthermore, the
contact transformations obtained from these point transformations may also be employed to
generate new solutions for the nonlinear PDE (1.1) (f (u) = (λ/(u+ µ)2)) using solutions
of the linear PDE (1.3) (f (u′) = constant). Such examples of using linearizing contact
transformations to generate new solutions can be found in [5, 18, 19, 21, 22].
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